已知向量OP1=(cosθ,sinθ),向量OP2=(1+sinθ,1-cosθ),θ∈R,向量P1P2长度最大值是?
A.根号2 B.2倍根号2 C.3倍根号2 D.4倍根号2
人气:143 ℃ 时间:2020-04-12 07:39:30
解答
向量P1P2=向量OP2-向量OP1
=(1+sinθ,1-cosθ)-(cosθ,sinθ)
=(1+sinθ-cosθ,1-cosθ-sinθ)
|向量P1P2|
=√[(1+sinθ-cosθ)²+(1-cosθ-sinθ)²]
=√[(1+sinθ-cosθ)²+(1-cosθ-sinθ)²]
=√[2+2(sin²θ+cos²θ)-4cosθ]
=√(4-4cosθ)≤2√2
B.2倍根号2
推荐
- 设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2=(2+sinθ,2-cosθ),则向量P1P2长度的最大值是
- 设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2 = (2+sinθ,2-cosθ ),则向量P1P2长度的最大值
- 设0
- 已知两向量op1=(cosθ,sinθ),op2=(1,-1),则向量p1p2模的最小值是?
- 设θ∈[0,2π],AP1=(cosθ,sinθ),OP2=(3-cosθ,4-sinθ).则P1、P2两点间距离的取值范围是_.
- 某书店要在店内醒目的地方挂一条横幅,条幅上写一句名言,请问写什么名言适合那?
- 有谁会做一元二次方程的回答一下,我问几个问题.
- 在平面直角坐标系中,作出函数y等于负二分之一x加一的图像,并根据图像回答问题:(1)当x取何值时,y>0?(2)当0≤x≤2时,求y的取值范围.
猜你喜欢