设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2=(2+sinθ,2-cosθ),则向量P1P2长度的最大值是
人气:484 ℃ 时间:2020-01-29 19:58:33
解答
P1P2=OP2-OP1=(2+sinθ-cosθ,2-cosθ-sinθ)
|P1P2|^2=(2+sinθ-cosθ)^2+(2-cosθ-sinθ)^2
=2(2-cosθ)^2+2(sinθ)^2=10-8cosθ,当cosθ=-1时取最大
P1P2长度的最大值是√18=3√2
推荐
- 设0≤θ≤2π,已知两个向量OP1=(cosθ,sinθ),OP2 = (2+sinθ,2-cosθ ),则向量P1P2长度的最大值
- 设0小于等于A小于2π,已知:两个向量OP1=(COSA,SINA),OP2=(2+SINA,2-COSA),则向量P1P2的长度的最大值是
- 设θ∈[0,2π],AP1=(cosθ,sinθ),OP2=(3-cosθ,4-sinθ).则P1、P2两点间距离的取值范围是_.
- 已知向量OP1=(cosθ,sinθ),向量OP2=(1+sinθ,1-cosθ),θ∈R,向量P1P2长度最大值是?
- 已知向量a=(cosa,sina),b=(cosβ,sinβ),c=(-1,0).(Ⅰ)求向量b+c的长度的最大值; (Ⅱ)设a=π/4,且
- It's pleasure 和My pleasure 和Withpleasure分别是什么意思?
- you've got to do your own growing no matter how tall your father was
- 3 求过点(1,1,1)且同时平行于平面X+Y-2Z+1=0及X+2Y-Z+1=0的直线方程.
猜你喜欢