> 数学 >
已知f(x0=acos²wx+(√3)asinwxcoswx+b(w>0,a≠0)的最小正周期为∏,函数f(x)的最大值是求w,a,b和单
已知f(x)=acos²wx+(√3)asinwxcoswx+b(w>0,a>0)的最小正周期为∏,函数f(x)的最大值是7/4,最小值为3/4
1.求w,a,b
2.求f(x)单调递增区间
人气:258 ℃ 时间:2019-12-29 21:54:53
解答
1.f(x)=acos²wx+(√3)asinwxcoswx+b(w>0,a>0)=(√3/2)*asin2wx+a(1+cos2wx)/2+b=(√3/2)*asin2wx+(a/2)*cos2wx+a/2+b=a*sin(2wx+π/6)+a/2+b因为最小正周期为π所以T=2π/2w=π那么w=1因为最大值是7/4,最小值...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版