已知x,y,z为正实数,求3(x^2+y^2+z^2)+2/x+y+z的最小值.好像要用柯西不等式做.
人气:111 ℃ 时间:2019-11-22 17:54:49
解答
若x、y、z∈R+,则
依三元均值不等式和柯西不等式得:
3(x²+y²+z²)+2/(x+y+z)
=(1²+1²+1²)(x²+y²+z²)+2/(x+y+z)
≥(x+y+z)²+1/(x+y+z)+1/(x+y+z)
≥3·[(x+y+z)²·1/(x+y+z)·1/(x+y+z)]^(1/3)
=3.
以上两不等号同时取等时,易得x=y=z=1/3.
∴当x=y=z=1/3时,所求最小值为:3.
推荐
- 用柯西不等式解 已知正实数x,y满足1/2+x+1/2+y=1/4,求xy的最小值
- 已知x+2y=1,求x^2+y^2最小值.柯西不等式
- 柯西不等式 已知x,y,z∈R+,x+y+z=1,求(x+1/x)^2+(y+1/y)^2+(z+1/z)^2的最小值
- 已知X-(根3/2)*Y+(根3/2)*Z=1 Y+Z=-2 求x^2+y^2+Z^2的最小值 能否用柯西不等式
- 柯西不等式正实数x+y+z=1,
- not unusual和unusual有不同吗
- 长为2L的绝缘细线,一端固定在O点,中点系一质量为m、电量为+3q的小球(球半径可忽略不计),线的另一端再系一个质量为m、电量为-q的小球,平衡时线能伸直拉紧,现引入一水平向右的匀强电场,则在平衡时两段线与竖直方向的夹角有什么关系?
- 在三角形abc中,若a=x,b=2,∠b=45°,这个三角形有两个解 ,则x的取值范围是?
猜你喜欢