试确定λ的值,使曲线积分∫(A→B)(x^4+4x*y^3)dx+(6x^(λ-1)*y^2-5y^4)dy与路径无关,
并求当A,B分别为(0,0),(1,2)时曲线积分的值.
人气:248 ℃ 时间:2019-11-14 06:09:39
解答
将原积分看为∫Pdx+Qdy因为原积分与路径无关所以P对y的偏导=Q对x的偏导;P对y的偏导=12xy^2Q对x的偏导=6(λ-1)x^(λ-2)y^212=6(λ-1) 1=λ-2解得λ=3取点C(1,0)则路径AC上,dy=y=0,I1=∫(A→C)(x^4)dx,所以积分值为...
推荐
- 设曲线积分∫L(x4+4xyk)dx+(6xk-1y2-5y4)dy与路径无关,则k=_.
- 证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy
- L是定点分别为(-1/2,5/2),(1,5),(2,1)的三角形正向边界,是计算曲线积分∮L(2x-y+4)dx+(5y-3x-6)dy
- L为三顶点(0,0)(3,0)和(3,2)的三角形区域的正向边界 求曲线积分∫L(2x-y+4x)dx+(5y+3x-6)dy
- 另询:∫L(x^2+y)dx+(2x-y^2)dy ,L是曲线 x^2+y^2=4x 的上半弧段
- 大洲是大陆和附近的岛屿的合称,那么全球应有几大洲几大陆.
- 用白光光源进行双缝干涉实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则
- 在同一平面内有直线a1、a2、a3、a4
猜你喜欢