∵AB∥x轴,AC∥y轴
∴B(a,y),C(x,y+AC),

∵A在反比例函数y=
| 2 |
| x |
∴xy=2,
∵点B在反比例函数y=
| 4 |
| x |
∴ay=4,
∴a=2x,
则AB=2x-x=x,
∵AB=2AC,
∴AC=
| 1 |
| 2 |
∴C(x,
| 1 |
| 2 |
∵C在反比例函数y=
| 4 |
| x |
∴x×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解得:x=±2,
∵A在第一象限,
∴x=2,
则y=1,
∴A(2,1),
故选:B.
| 2 |
| x |
| 4 |
| x |
A. (1,2)| 2 |
| 2 |
| 2 |
| 3 |

| 2 |
| x |
| 4 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |