若f(x)是定义在R上的奇函数,且f(x+2)也为奇函数,则f(x)是以4为周期的奇函数.求证明这一点.
人气:463 ℃ 时间:2019-09-06 04:38:46
解答
根据奇函数的定义,
f(-x)=-f(x)①
f(-x+2)=-f(x+2)②
由①,有f(-x+2)=-f(x-2)③
将③代入②,有-f(x-2)=-f(x+2),即f(x-2)=f(x+2)
则已经证明f(x)是以4为周期了.
推荐
- 已知f(x)是定义在R上的奇函数,且它的图像关于直线x=1对称.1.证明f(x)是周期函数.
- 定义在R上的函数f(x)是最小正周期为2的奇函数,且当x∈(0,1)时,f(x)=2^x/(4^x+1)
- 函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,证明f(x)周期为4
- 已知定义在R上的奇函数f(x)有最小正周期2,当x属于(0,1)时,f(x)=2^x/(4^x+1),求f(x)在[-1,1]上的解析式.
- 定义在R上的奇函数f(x)有最小正周期2,且X属于(0,1)时,f(x)=2^x/4^x+1,
- 已知函数f(x)=根号3sinxcosx-cos^x-1/2,x∈r,求函数的最小值.
- 翻译make English study plan for the term .Discuss it with your classmates
- 求关于对世界杯的看法的英语作文(300词)
猜你喜欢