f(x)在【0,1】上连续,(0,1)内可导,f(1)=0,证至少存在一点ξ属于(0,1),使f'(ξ)=-2f(ξ)/ξ
人气:228 ℃ 时间:2020-04-09 20:00:01
解答
令F(x)=x²f(x)
则 F(1)=F(0) =0
所以存在ξ属于(0,1),使得
F'(ξ) = 2ξf(ξ)+ξ²f'(ξ) = 0
整理有f'(ξ)=-2f(ξ)/ξ
证毕
推荐
- f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1),使f``(ξ)=2f`(ξ)/1-ξ.
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0
- 设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/...
- 设f(x)在[0,1]上二阶可导,且f(0)=f(1),试证:至少存在一个§属于(0,1),使f''(§)=2f'(§)/(1-§)
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,试证明至少存在一点ζ∈(0,1),使f′(ζ)=-2f(ζ)/ζ
- I mean I’ve got it narrowed down to two people
- 在马克思主义政治经济学中怎样理解科学技术是第一生产力
- 某公司拟购置一处房产,房主提出三种付款方案:
猜你喜欢