设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,试证明至少存在一点ζ∈(0,1),使f′(ζ)=-2f(ζ)/ζ
人气:171 ℃ 时间:2020-04-11 04:55:48
解答
令F(X)=Xf(x),F(1)=1*f(1)=0,F(0)=0*f(0)=0.且F(x)在[0,1]上连续,在(0,1)内可导.
满足罗尔中值定理的条件,故存在ζ使得,F′(ζ)=0,F'(X)=f(x)+Xf'(x).故f(ζ)+ζf′(ζ)=0.
所以f′(ζ)=-2f(ζ)/ζ.
证毕.
推荐
- 设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)=- 2f(g)/g
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0
- 设f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0.证明:至少存在一点§?(0,1),使得f'(§)=-2f (§)/...
- f(x)在(0,1)上可导,在[0,1]连续.且f(1)=0,试证明存在ξ属于[0,1]使得f(ξ)'= -2f(ξ)/ξ成立
- x^2-(4000-x)^2=3000^2
- 化学中的极性与非极性有什么区别
- 某人在坡度i=1:3的斜面上前进了80米,则高度上升了多少米
猜你喜欢