设A,B都是N阶方阵,I为N阶单位矩阵,且B=B2,A=I+B,证明A可逆
B2的2在B的右上方是小2,
人气:162 ℃ 时间:2019-09-22 09:39:37
解答
因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的,因为B^2=B,则它的特征值是0或1,那么B+I的特征值只能是1或者2,所以0不会是B+I...
推荐
- 设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设A,B是n阶方阵,E是n阶单位矩阵,且AB=A-B,证明A+B可逆
- 设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆
- 一个概率题
- 修一条隧道,甲工程单独修要60天完成,乙工程单独修要75天完成.如果甲、乙两队合修,多少天可以完成这项工程的10分之9?
- 灯泡用久了变黑是什么反应?
猜你喜欢