AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于D,交AE于F,BC交AE于G,求证:AF=FG
人气:171 ℃ 时间:2019-10-17 05:42:00
解答
证明:
连接AC
因为C是弧AE的中点
所以弧AC=弧EC
所以∠CAE=∠ABC
因为直径AB垂直平分弦CN
所以弧AC=弧AN
所以∠ACN=∠ABC
所以∠ACN=∠CAE
所以AG=CG
因为AB是直径
所以∠ACB=90,即∠ACN+∠BCN=90
因为∠AGC+∠CAE=90
所以∠BCN=∠AGC
所以FG=CG
所以AF=FG
推荐
- 己知如图AB、CD是⊙O的两条直径,弦CE∥AB,求证:AD=AE.
- 如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点G求证CF=GF
- 已知AB是圆O的直径,AE是弦,C是弧AE的中点,CD垂直AB交与点D,交AE于点F,CB交AE于点G.求证CF=FG
- 已知,AB是⊙O的直径,弦CD⊥AB,E是AC上的一点,AE,DC的延长线相交于点F,求证:∠AED=∠CEF.
- 已知,AB是⊙O的直径,弦CD⊥AB,E是AC上的一点,AE,DC的延长线相交于点F,求证:∠AED=∠CEF.
- If your prices are competitive,we will place a large order with you.
- I perfer the pink dress to the green one.
- 写一份英语倡议书,号召大家节约用水
猜你喜欢