已知Rt三角形ABC的直角顶点A在直线ρcos θ=9上移动,c为原点,角ACB=30°,求顶点B的轨迹的极坐标方程
人气:282 ℃ 时间:2019-08-18 11:36:15
解答
A点的直角坐标为(9,ρsinθ).
下面分两种情况讨论
若ABC为顺时针方向,则B点的直角坐标为(2ρ/√3*cos(θ-π/6),2ρ/√3*sin(θ-π/6)),而角A为直角,所以可建立等式AB*AC=0即9(2ρ/√3*cos(θ-π/6)-9)+ρsinθ(2ρ/√3*sin(θ-π/6)-ρsinθ)=0,化简得ρ^2sinθcosθ-ρ(9√3cosθ+9sinθ)+81√3=0
即(ρsinθ-9√3)(ρcosθ-9)=0,其中ρcosθ=9为A的轨迹,所以B的轨迹为ρsinθ=9√3
若ABC为逆时针方向,则B点的直角坐标为(2ρ/√3*cos(θ+π/6),2ρ/√3*sin(θ+π/6)),而角A为直角,所以可建立等式AB*AC=0即9(2ρ/√3*cos(θ+π/6)-9)+ρsinθ(2ρ/√3*sin(θ+π/6)-ρsinθ)=0,化简得ρ^2sinθcosθ+ρ(9√3cosθ-9sinθ)-81√3=0
即(ρsinθ+9√3)(ρcosθ-9)=0,其中ρcosθ=9为A的轨迹,所以B的轨迹为ρsinθ=-9√3
推荐
- 直角ABC的顶点AB 分别在x轴,y轴的正半轴上移动,直角顶点C与原点O在直线AB的两侧 求的C轨迹
- 三角形ABC的顶点A固定,点A的对边BC=2a,边BC上的高的长是b,边BC沿一定直线移动,求三角形外心轨迹
- 已知三角形ABC两个顶点坐标为A(-2,0),B(2,0),第三个顶点C在曲线y=3x^2-1上移动.求三角形重心的轨迹方程
- 已知三角形ABC,A(-2,0),B(0,-2),第三个顶点C在曲线Y=3XX-1上移动,求三角形ABC的重心的轨迹方程
- 已知三角形ABC中,A(-2,0),B(0,-2),顶点C在曲线x2+y2=4上移动,求三角形的重心G的轨迹方程
- 用算式表示10与比她相反数小4的数的差应为:A10-[-4] C10+[-4] D10+[+4] B10-[+4]
- 写出下列动词的第三人称单数和现在分词形式 ask clean watch come read eat write sing wake talk
- 我想要心的自由英文怎么说
猜你喜欢