| 1 |
| x |
| b |
| x2 |
∴由题意可得:
|
|
(11)由(I)可知g(x)=
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x |
∵F'(x)=
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x2 |
| 1 |
| 2 |
| 1 |
| x2 |
| 2 |
| x |
| 1 |
| 2 |
| 1 |
| x |
∴F(x)是(0,+∞)上的减函数,而F(1)=0,(9分)
∴当x∈(0,1)时,F(x)>0,有f(x)>g(x);
当x∈(1,+∞)时,F(x)<0,有f(x)<g(x);
当x=1时,F(x)=0,有f(x)=g(x).(12分)
| b |
| x |
| 1 |
| x |
| b |
| x2 |
|
|
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x2 |
| 1 |
| 2 |
| 1 |
| x2 |
| 2 |
| x |
| 1 |
| 2 |
| 1 |
| x |