> 数学 >
定义在R上的函数y=f(x),当x〉0时,f(x)〉1,且对任意的a,b属于R,有f(a+b)=f(a)f(b),
(1)求f(0)=1;
(2)求证:对任意的x属于R,恒有f(x)〉0
(3)证明:f(x)是R上的增函数;
(4)若f(x)·f(2x-x2)〉1,求x的取值范围.
人气:132 ℃ 时间:2019-11-25 15:17:25
解答
1,令a=b=0,得f(0)=f(0)^2,所以f(0)=0或1.令b=0,a>0,得f(a)=f(0)f(a)>0,所以f(0)=1.2,任取x>0,则f(0)=f(x)f(-x),f(x)>0,所以f(-x)>0,对任意的x属于R,恒有f(x)〉0.3,任取x11,所以f(x2)>f(x1),f(x)是R上的增函数.4,...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版