已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1 (用数学归纳法)
人气:328 ℃ 时间:2019-08-20 10:54:40
解答
x1=1/2,x2=1/(1+1/2)=2/3
故当n=1时, lx2-x1l=1/6
推荐
- 已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1
- x1=根号6 xn+1=根号下6+xn (n大于等于1)证明:数列xn的极限存在 答案开头是用数学归纳法易证根号6小于等
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,猜想数列{X2n}的单调性,并证明你的结论
- 设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
- 怎么1小时记100个英语单词
- 二分之一,三分之一 ,六分之五,( ),六分之十二,( ) 按规律填数.
- 三角函数的诱导公式有没有简单的记法
猜你喜欢