已知函数f(x)=lnx-ax
2+(2-a)x.
①讨论f(x)的单调性:
②设a>0,证明:当0<x<
时,f(
+x)>f(
-x).
人气:195 ℃ 时间:2019-08-11 18:16:18
解答
①函数f(x)的定义域为(0,+∞),∵f(x)=lnx-ax2+(2-a)x,∴f'(x)=1x−2ax+2−a=−2ax2+(2−a)x+1x=−(2x+1)(ax−1)x.(1)若a>0,则由f′(x)=0,得x=1a,当x∈(0,1a)时,f′(x)>0,此时函数单调...
推荐
- 已知函数f(x)=(a+1)lnx+ax^2+1 讨论函数的单调性
- 已知函数f(x)=1/2x^2-ax+(a-1)lnx,a>1,讨论f(x)的单调性
- 已知函数f(x)=lnx-ax+1−ax-1(a∈R),当a≤1/2时,讨论f(x)的单调性.
- 已知函数f(x)=lnx - ax + (1-a)/x -1(a∈R) ,当0≤a
- 急!已知函数f(x)=(a+1)lnx+ax^2+1讨论其单调性
- 请问:氢氧化钠的溶解度是多少?1克氢氧化钠至少要用多少毫升水来溶解?
- 6.运送一批货物,第一天运总数的三分之一,第二天运了90吨,这是已经运的与剩下的比是7比5,这批货物有多少吨?7.一批大米,第一天用去总数的五分之二二,第二天用去100吨,两天共用了多少吨?
- 画出求解S=1+(1+2)+(1+2+3)+(1+2+3+4)+…+(1+2+3+…+50)的程序框图.
猜你喜欢
- 李老师一天去体育用品商店,第一次买了球拍两个,羽毛球两个,用了82元,第二次买了球拍两个,羽毛
- 仿写 非洲,好一个多姿多彩的世界!
- 为什么不规定零向量与任意向量垂直
- 地球自转的方向是由( )向( )?
- 怎样用线条来表现出物体的立体感,空间感,质感,量感?
- Life in a small town could be d( )
- 1,2,-3,-4,5,6,-7,-8,9,10.-2003-2004,2005,2006...是从1开始的连续整数中依次两个取正.两个取负写
- Do you think it's worthy of going to universities for master's degree?中文意思