设A,B是椭圆x2+3y2=1上的两个动点,且OA OB(O为原点),求|AB|的最大值与最小值.
人气:112 ℃ 时间:2020-06-08 06:28:12
解答
圆x2+3y2=1上的两个动点,且OA 垂直于OB(O为原点),求|AB|的最大值与最小值.
椭圆方程为x^2/1+y^2/(1/3)=1,可设椭圆上动点的参数表达式A(cosa,√3/3*sina),B(cos(a+π/2),√3/3*sin(a+π/2)),也即A(cosa,√3/3*sina),B(-sina,√3/3*cosa).于是
|AB|=√[(cosa+sina)^2+(√3/3*sina-√3/3*cosa)^2]=√[1+2sinacosa+1/3-2*√3/3*sina*√3/3*cosa]
=√[4/3+2/3*sin2a]
故最大值为√[4/3+2/3]=√2,最小值为√[4/3-2/3]=√6/3
推荐
- AB是椭圆X^2+3Y^2=1 上两个动点,OA垂直OB,O为原点,求AB最大值和最小值
- 设A,B是椭圆x^2+5y^2=1上的两个动点,且OA⊥OB(O为坐标原点),求/AB/的最大值和最小值
- 已知椭圆X^2/9+y^2/5=1过原点O作两条互相垂直的射线OA、OB分别交该椭圆于AB两点求1/|OA|^2+1/|OB|^2为定值
- 设A、B是椭圆x^2/4+y^2=1上的两点,O为坐标原点 若直线AB在y轴上的截距为4,且OA,OB斜率之和等于2
- 椭圆X^2/a^2+y^2/b^2=1(a>b>0)上有两点A、B满足OA垂直于OB(O为坐标原点),求证:O到直线AB距离为定值
- 已知函数f(x)=根号3sinxcosx-cos^x-1/2,x∈r,求函数的最小值.
- 翻译make English study plan for the term .Discuss it with your classmates
- 求关于对世界杯的看法的英语作文(300词)
猜你喜欢