已知两个非零向量a,b,夹角a=120°,且(a-3b)垂直于(7a+5b),问是否存在实数x,满足(a-4b)垂直于(xa-b)
要过程 谢
人气:258 ℃ 时间:2020-04-07 21:03:02
解答
存在.
因为(a-3b)垂直于(7a+5b),所以(a-3b)*(7a+5b)=o,展开7|a|^2-16ab-15|b|^2=0
又因为ab夹角为120,所以进一步得到7|a|^2+8|a||b|-15|b|^2=0,(|a|-|b|)(7|a|+15|b|)=0
所以|a|=|b|.
假设(a-4b)垂直于(xa-b),则(a-4b)*(xa-b)=0,再运用|a|=|b|,展开,最后得到(3x+9/2)|a|^2=0,存在这样的x,且x=-2/3,所以假设成立.(3x+9/2)|a|^2=0怎么来的?(a-4b)*(xa-b)=0展开x|a|^2-(1+4x)ab+4|b|^2=0 而|a|=|b|,ab=|a|*|b|*cos120,再用|a|替换所有的|b|进一步就可以得到(x+4)|a|^2+1/2(1+4x)|a|^2=0,再提出|a|^2, |a|^2(3x+9/2)=0
推荐
- 已知向量a=(-3,2),b=(-1,0),xa+b与x-2b垂直,则实数x的值
- 已知向量a和b的夹角为120度,且|a|=4,|b|=2,求:(1)|a+b|;(2)|3a-4b|;(3)|(a+b)*(a+2b)
- 向量:a,b是两个不共线非零向量 若a,b的模=1,且a,b夹角为120°,那么实数x为何值时|a-xb|最小?
- 已知向量a=(-3,2),b=(-1,0),xa+b与x-2b共线,则实数x的值
- 已知在同一平面上的三个单位向量a,b,c,他们相互之间的夹角均为120°,且Ika+b+cI>1,则实数k的取值范围是
- 从生物中提取一种氨基酸,而不要其他氨基酸,该如何测定目标氨基酸的纯度?
- 中心城市是在区域经济发展中起什么作用的城市
- 请问这个要怎么做 要变成 动词的非限定形式 我不太明白
猜你喜欢