如图(1),已知△ABC中,角BAC=90度,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E
(1)求证:BD=AE
(2)猜想:BD与DE、CE之间的关系,并证明你的猜想.
(3)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?直接写出结果不需说明理由
人气:226 ℃ 时间:2019-08-21 07:49:49
解答
(1)角BAC=90度,AB=AC,所以∠B=∠C=45°
CE⊥AE于E,所以∠EAC=∠C=45°,AE=CE
所以E为BC中点BD=AE
推荐
- 如图,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的同侧,BD⊥AE于D,CE⊥AE于E,试说明:BD+CE=DE
- 如图,三角形ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E.
- 如图 已知△ABC中,∠BAC=90°,AB=AC,BD⊥AE于D,CE⊥AE于E,求证: BD=DE+CE.
- 如图 在三角形ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE
- 如图,已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E
- yesterday'football match made them feel (bored,boring)
- nether nor与either的意思和so that的意思与用法?用法句个例子和位置
- 若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2
猜你喜欢