f(x)在[0,3]连续可导 f(0)+f(1)+f(2)=3 f(3)=1 证明至少存在一点§属于(0,3)使f'(§)=0
f(0)+f(1)+f(2)=3 f(3)=1
人气:141 ℃ 时间:2020-03-12 04:30:23
解答
证明:
设在[0,2]上不存在x0满足f(x0)=1
则由介值定理得f(0),f(1),f(2)都大于1或者都小于1
则f(0)+f(1)+f(2)≠3,∴存在x0使f(x0)=1=f(3)
则由罗尔定理得f(x)在[x0,3]上结论成立
也就是在[0,3]上结论成立
推荐
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- 设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证明.必存在ξ∈(0,3),f'(ξ)=0
- 证明题 设f(x)在区间[0,3]上连续,在区间(0,3)内可导,且f(0)+f(1)+f(3)=3,f(3)=1,试证明必存在一点
- 设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]
- 设f(x)在【0,1】上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1/2,证明,存在ξ∈(0,1),使得f'(ξ)=1/3
- 设随机变量ξ的分布列P(ξ=k)=1/5,k=1,2,3,4,5
- 6年级有关方位的英语单词
- 当M不等于n时,分式mn/m的平方-n的平方,这句话对?为什么?
猜你喜欢