>
数学
>
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(
1
2
)=0,则满足f(
log
1
4
x
)<0的集合为 ___ .
人气:245 ℃ 时间:2019-10-10 05:24:56
解答
∵定义在R上的偶函数f(x)在[0,+∞)上单调递减,
∴偶函数f(x)在(-∞,0]上单调递增,
又∵f(
1
2
)=0,
∴f(-
1
2
)=0,
若f(
log
1
4
x
)<0
则
log
1
4
x
<
-
1
2
,或
log
1
4
x
>
1
2
解得x>2,或0<x<
1
2
故答案为:(0,
1
2
)∪(2,+∞)
推荐
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .
定义在R上的偶函数y=f(x)在[0,+∞)上递减,且f(12)=0,则满足f(log14x)<0的x的集合为( ) A.(−∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,12)∪(2,
定义在R上的偶函数y=f(x)在[0,+∞)上递减,且f(12)=0,则满足f(log14x)<0的x的集合为( ) A.(−∞,12)∪(2,+∞) B.(12,1)∪(1,2) C.(12,1)∪(2,+∞) D.(0,12)∪(2,
定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数y=f(x)的一个零点为-1/2.求满足f(log1/4x)≥0的x的取值集合.
定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1/2)=0,则满足f(log1/4x)<0的集合为 _ .
我是一个四年级的学生用英语怎么说
一种原子能变成另外一种原子吗?
给句子换个说法,是意思不变:
猜你喜欢
控制性工程是什么意思
英语翻译
帮我解几道二元一次方程组.只要答案,不需要过程
酒精的密度是0.8×10³kg/m³,表示的意义是
化学反应的条件中,"点燃"和"加热"有何不同?
下列各项因素中,对植物的分布影响最大的是
怎样提高作文成绩
3600除以25除以8这道题要用简便方法来写,
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版