>
数学
>
已知α
1
,α
2
,α
3
,α
4
是四维非零列向量,记A=(α
1
,α
2
,α
3
,α
4
),A
*
是A的伴随矩阵,若齐次方程组Ax=0的基础解系为(1,0,-2,0)
T
,则A
*
x=0的基础解系为( )
A. α
1
,α
2
B. α
1
,α
3
C. α
1
,α
2
,α
3
D. α
2
,α
3
,α
4
人气:400 ℃ 时间:2020-06-22 10:11:11
解答
Ax=0的基础解系只含有一个向量,所以矩阵A的秩为3,
∴A存在不为0的3阶子式,即A
*
不为0
∴r(A
*
)≥1
又因为,此时
.
A
.
=0,由AA
*
=
.
A
.
E=0,知r(A)+r(A
*
)≤4
∴r(A
*
)≤1
∴r(A
*
)=1
∴A
*
x=0的基础解系含有三个向量
∴正确答案只可能是C或者D
∵(α
1
,α
2
,α
3
,α
4
)
1
0
−2
0
=0
即α
1
-2α
3
=0
∴α
1
与α
3
线性相关
而方程组的基本解系必须是线性无关的向量
∴正确答案为D.
推荐
设a1 a2 a3是齐次线性方程组Ax=0的一个基础解系,证明a1+a2,a2+a3,a3+a4也是Ax=0的一个基础解系
关于线性代数的小问题 设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4
设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为
设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求Ax=b的解
设5×4矩阵A的4个列向量a1,a2,a3,a4线性无关,b=a1+a2-a3-a4,那么线性方程组AX=b有__解,并且它的解为__
已知向量m=(sinx,1),n=(根号3cosx,1/2)
How is the information___(store)?
The best way of learning English is talking in English as _______(many)as possible.
猜你喜欢
设集合A={1,2,3,……,10},求集合A的所有非空子集元素的和.
我国历史上有哪些明辨是非善恶的人物故事、名言警句?
8÷[1÷(3.2-2.95)] 用简便方法计算
赞美老师的句子
《再塑生命的人》
怎样写好汉字和英文字?
由2种原子直接组成的混合物
若多项式X的平方+KX+16是一个完全平方式,则K的值是多少
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版