设f(x)对任意的x,y都有f(x+y)+f(x-y)=2f(x)+f(y)且f(0)≠0,求证f(x)是偶函数
人气:367 ℃ 时间:2020-05-24 23:00:54
解答
f(y) = f(x+y)+f(x-y) -2f(x)
f(-y) = f(x-y)+f(x+y) -2f(x) =f(y)
f(x)是偶函数
推荐
- 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
- f(x+Y)+f(x-y)=2f(x)f(Y) 求其是偶函数 急
- 已知f(x)的定义域为R,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:y=f(x)为偶函数
- 已知函数f(x)满足f(x+y)+f(x-y)=2f(x)•f(y) (x∈R,y∈R),且f(0)≠0,试证明f(x)是偶函数.
- f(x+y)+f(x-y)=2f(x)f(y),对任意实数x,y恒成立,且f(1)≠f(2),求证:f(x)是偶函数.
- 有的家长一心想让孩子早日成家成名,逼他们学这学那,这种现象,不仅使我们想起()这个寓言故事
- 硫酸浓度为20%PH值是多少
- Don' t you think it's the time that we_____our homework Doing.To do did.Will do
猜你喜欢