设矩阵A满足A^2+2A-E=0,证明A及A-E都可逆,并求A^-1及(A-E)^-1 第一次做 不太
人气:478 ℃ 时间:2020-01-31 11:12:15
解答
因为A^2+2A-E=0
所以A(A+2E)=E,所以|A|≠0
同理可得A^2-A+3A-3E=-2E,
即(A+3E)(A-E)=-2E,则有|A-E|≠0
所以A及A-E都可逆
同时可得A^-1=A+2E
(A-E)^-1 =-(A+3E)/2
推荐
- 设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.
- 如何证明可逆矩阵的转置矩阵也可逆.要有详细步骤
- 设矩阵A=(1 0 0 证明当n≥3时 A^n=A^(n-2)+A^2-E,并求A^100 1 0 1 0 1 0) 希望给出详解,
- 设A为可逆矩阵,证明:(A*)^-1=(A^-1)*,
- 证明A,B矩阵为合同矩阵的步骤应该是怎样的?
- 告诉我一下初一下的数学试题我想知道到,非常感谢各位5e
- 已知集合M={(x,y)|x+y=1},映射f:N,在f的作用下点(x,y)的映射为(2的x次方,2的 y次方),N=?
- What are the tigers doing?该怎么回答?
猜你喜欢