x1=sina,x2=cosa,因为:
sin²a+cos²a=1,
即:
(sina+cosa)²-2sinacosa=1
又:x1+x2=sina+cosa=-(√2+1)/2,x1x2=m/2
代入,得:
[-(√2+1)/2]²-m=1
解得:
m=(1/2)+√2
则:
sina+cosa=-(√2+1)/2、sinacosa=(1/4)+(√2/2)
则:
1/sina+1/cosa=(sina+cosa)/(sinacosa)=[-(√2+1)/2]÷[(1/4)+(√2/2)=(6+2√2)/7