若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=3+absinx的最大值
人气:476 ℃ 时间:2020-01-25 07:04:10
解答
最大值为|a|+b=1
最小值为-|a|+b=-7
两式相加,得:2b=-6,故b=-3
两式相减,得:2|a|=8,故|a|=4
y=3+absinx的最大值为3+|ab|=3+12=15你用的哪个公式什么 什么意思因为|cosx|<=1所以acosx的最大值为|a|, 最小值为-|a|为什么sin 不能用sin也是一样呀asinx的最大值也是|a|,最小值也是-|a|呀
推荐
- 若函数y=acosx+b(a,b为常数)的最大值为1,最小值为-7,则y=2+absinx的最大值
- 设函数y=acosx+b(a、b为常数)的最大值是1,最小值是-7,那么acosx+bsinx的最大值是( ) A.1 B.4 C.5 D.7
- 若函数y=asinx+b,(a,b为常数)的最大值为1,最小值为-7,求y=3+absinx的最大值
- 若函数y=cosx+b(a,b为常数)的最大值为1,最小值为-7,则y=3+absinx的最大值为
- 设函数y=acosx+b(a、b为常数)的最大值是1,最小值是-7,那么acosx+bsinx的最大值是( ) A.1 B.4 C.5 D.7
- lim(x趋向0) x^2 / (sin^2) * x/3
- 是否存在分母为12的比六分之五小的最简分数,如果存在,写出所有符合条件的最简分数
- 《钱塘湖春行》作者为了描写出春天的美好,选了那些景物?用一个字概括.
猜你喜欢