已知数列{an}满足a1=1,a2=2,a(n+2)=an+a(n+1),n∈N*(1)令bn=a(n+1)-an,证明{bn}是等比数列
(2)求{an}的通项公式,
a(n+2)=【an+a(n+1)】/2
人气:180 ℃ 时间:2019-08-28 02:15:42
解答
(1)证明:2a(n+2)=an+a(n+1)∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an]bn=a(n+1)-an,∴2b(n+1)=-bn,即b(n+1)/bn=-1/2∴{bn}是等比数列(2)2a(n+2)=an+a(n+1)等式俩边同时减去2a(n+1)∴2[a(n+2)-a(n+1)]=an-a(n+1...
推荐
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N.〈1〉令bn=an+1-an,证明:{bn}是等比数列:求{an...
- a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
- 已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn是等比数列 二 求an通项公
- 设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数
- 玻璃制的镜子,最早出现在哪里,我国最早的玻璃镜子是
- 我们应该怎样珍惜生命、保护生物的生存环境?
- Well-established principles-both in this Circuit and else-where-furnish the analytical scaffolding for determining wheth
猜你喜欢