a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
人气:185 ℃ 时间:2019-08-18 10:57:26
解答
a(n+2)=[an十a(n+1)]/2=a(n+2)-a(n+1)=[an-a(n+1)]/2
化b(n+1)=-1/2*bn(因bn=a(n+1)-an)
{bn}等比数列,b1=1,公比-1/2
则bn=(-1/2)^(n-1)
推荐
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N.〈1〉令bn=an+1-an,证明:{bn}是等比数列:求{an...
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 已知数列{an}中a1=1 a2=2 且an+1=(1+q)an-qan-1设bn=an+1-an 证明{bn}是等比数列
- 已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn是等比数列 二 求an通项公
- 有哪些人是身残志坚笑对人生令人敬佩的人
- 钟表的分针匀速旋转一周需要60分,当分钟旋转270°,经过了多长时间
- ____他来了半命题作文
猜你喜欢