已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)
记数列an=f(2∧n)
1,证明a1=a2
2,令数列bn=2∧n × an,求证数列bn为等差数列
3,若a1=1,Sn为数列an的前n项和,求Sn
人气:221 ℃ 时间:2020-03-30 22:46:34
解答
1、在已知等式中,取 x=y=2 得 4f(4)=2f(2)+2f(2)=4f(2) ,
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .
推荐
- 一知f(x)是定义域在(-∞,+∞)上的函数,函数且对任意xy属于R都有f(xy)=yf(x)+xf(y)
- 已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断函数f(x)的奇偶性.
- 已知f(x)是定义在R上且不恒等于0的函数,对任意的x,y∈R,有f(xy)=xf(y)+yf(x).
- 已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (I)求f(1),f(-1)的值; (Ⅱ)判断f(x)的奇偶性,并说明理由.
- 一知f(x)是定义域在(0,+∞)上的函数,f'(x)=2,又对任意xy属于(0,+∞)都有f(xy)=yf(x)+xf(y)求f(x)
- 问个字的拼音,王字旁加个去怎么读啊,
- 如何计算ASCⅡ码值
- 英译中一段话.谢.
猜你喜欢