> 数学 >
已知等比数列{an}满足an>0,且a7·a2n-7=2^2n(n>=4).则当n>=1时,log2 a1+log2 a4 +…log2 a3n-2=( )
A.n(2n-1)
B.n^2
C.(n+1)^2
D.(3n-1)n/2
请帮我写出详细的解题过程.我反应慢、数学思维很迟钝的.
o(>_
人气:373 ℃ 时间:2020-06-07 02:32:41
解答
a7*a2n-7=a1*q^6*a1*q^(2n-8)=a1^2*q^(2n-2)=(a1/q)^2*q^2n=2^2n所以a1/q=1q=2 即a1=q=2
a1*a4*a7*.a3n-2=2^(1+4+7+.3n-2)=2^[(3n-1)n/2](用到等差数列求和1、4、7.)
log2 a1+log2 a4 +…log2 a3n-2=log(2)a1*a4*a3n-2=log(2)2^[(3n-1)n/2]=.(3n-1)n/2
答案D
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版