已知在区间[1,4]上的函数f(x)=x^2+px+q与g(x)=x+4/x^2在同一点取到相同的最小值,求在该区间上函数f(x)的最大值
人气:270 ℃ 时间:2019-08-20 02:44:12
解答
因为g(x)在定义域内单调递减,所以x=4时取到最小值
由此也能推出x=1时,f(x)max
所以f(x)min=f(4)=4+4/16=17/4,所以f(x)max=1-8+16=9g(x)取得最小值是不是应该是g(2)=3,g(4)=4+1/4?不是最小诶、、g(x)min=g(2)=3,所以f(x)min=f(2)=4+2p+q=3由此可判断,x=2时是最低点所以根据导数可知2x+p=0,p=-4所以q=7所以f(x)max=f(4)=16+(-4)×4+7=7
推荐
猜你喜欢
- He often walks____after school.
- 英语时态问题,求达人进
- 已知A=2004x+2003,B=2004x+2004,C=2004x+2005.
- 人体缺少哪种元素会甲状腺肿大
- she went to Nanjing by bus last week保持句意不变
- 已知直线方程 ,如何求直线方向向量(三维空间里)
- 多项式3x^3+2mx^2-5x+3与多项式8x^2-3x+5相加后,不含二次项,求m的值.
- 体积为60的长方体,长,宽,高分别为a,b,c,且满足50(a^2+b^2+c^2)=(3a+4b+5b)^2,则它的表面积为多少?