设f(x)在上连续,在[0,π]内可导,证明至少存在一点x属于(0,π),使f'(x)=-f(x)cotx
人气:115 ℃ 时间:2020-03-27 05:53:02
解答
设g(x) = f(x)sin(x).
则g(x)在[0,π]连续, 在(0,π)可导, 且g(0) = 0 = g(π).
由Rolle定理, 存在ξ ∈ (0,π)使g'(ξ) = 0.
即有f'(ξ)sin(ξ)+f(ξ)cos(ξ) = 0.
又ξ ∈ (0,π), 故sin(ξ) ≠ 0, 有f'(ξ) = -f(ξ)cot(ξ).
推荐
- 设f(x)在上连续,在[0,π]内可导,证明至少存在一点x属于(0,π),使f'(x)=-f(x)cotx
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- f(x)在[0,a]上连续,且在(0,a)内可导,f(a)=0,证明存在&属于(0,a)使f(&)+&f'(&)=0
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1-ξ
- 设f(x)在[0.π]上连续,(0,π)内可导 证明存在
- f(x)=log1/2(1-sinx)+log1/2(1+sinx) 那么f(π/3) =
- 将1-9,9个数填入括号中,不能重复.使等式成立.()()()=1/2*()()()=1/3*()()()
- y=sinθ(cosθ)^2的最大值为
猜你喜欢