已知如图,在平面直角坐标系中,点O是坐标原点,矩形OABC的顶点B在第一象限,点A,C的坐标分别为(3,0),
(0,1),点D是线段BC上的动点(与端点B,C不重合),过点D作直线y=-½x+b,交折线OA-AB于点E
⑴当b=2时求直线OD的解析式
⑵设△ODE的面积为S,求S与b的函数关系式
⑶当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积,若改变,请说明理由
人气:210 ℃ 时间:2019-10-11 13:54:00
解答
(1)设直线DE的解析式为:y=kx+b∵点D ,E的坐标为(0,3)、(6,0),∴ b= 3 6k+b=06k+3=06k=-3k=-0.5得 k=-0.5 b=3 ∴y =-0.5x+3 ∵ 点M在AB边上,B(4,2),而四边形OABC是矩形,∴ 点M的纵坐标为2.又 ∵ 点M在直线y=...
推荐
- 如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点O顺时针方向旋转90度
- 如图,在平面直角坐标系xOy中,长方形OABC的顶点B的坐标为(6,4),直线y=-x+b恰好将长方形OABC分成面积相等的两部分,那么b=_.
- 已知如图,在平面直角坐标系中,点O是坐标原点,矩形OABC的顶点B在第一象限,点A,C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B,C不重合),过点D作直线y=-½x+b,交折线OA-AB于点E
- 如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C( -1,0).将矩形OABC绕原点顺时针旋转90°
- 如图,在平面直角坐标系中,矩形OABC的顶点坐标为(15,6),直线y=1x+b恰好将矩形OABC的面积分成相等
- “Hit the water to go fishing”我知道它的意思是“去钓鱼”但是这里的hit是什么意思?什么用法?
- 一条六年级简算题
- 5.6乘8分之7+1除以3又3分之1
猜你喜欢