已知函数f(x)=3ax^4-2(3x+1)x^2+4x,当a=1/6时,求f(x)的极值
人气:261 ℃ 时间:2019-08-18 10:15:04
解答
应该是f(x)=3ax^4-2(3a+1)x^2+4xa=1/6f(x)=x^4/2-3x²+4xf'(x)=2x³-6x+4=0x³-3x+2=0(x³-1)-3x+3=0(x-1)(x²+x+1)-3(x-1)=0(x-1)(x²+x-2)=0(x-1)²(x+2)=0x=1,x=-2f'(x)>=0时...
推荐
- 已知函数f(x)=x^3-3ax^2+3x+1 设f(x)在区间(2,3)中至少有一个极值点,求a的范围.
- 已知函数f(x)=3ax4-2(3a+1)x2+4x(1)当a=1/6时,求f(x)的极值;(2)若f(x)在(-1,1)上是增函数,求a的取值范围.
- f(x)=1/3x3-4x+4 (1)求函数的极值 (2)求函数在区间(-3,4)上的最大值与最小值.
- 已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为[0,1]
- 求函数f(x)=1/3x3−4x+4的极值.
- To get your money's worth out of college,you'll have to do a lot of work on your own.
- 椭圆E的中心在坐标原点.焦点在坐标轴上.经过A(-2,0),B(2,0),C(1,3/2)三点.求椭圆E的方程
- 这个题是这样的 Name something red Name something tall Name something round Name something thin Name
猜你喜欢