> 数学 >
高二数学题,必修2的
在长方体ABCD—A1B1C1D1中AA1=a,∠BAB1=∠B1A1C1=30°,则异面直线AB1与A1C1所成角的余弦值为__________.
要有详细的过程
人气:249 ℃ 时间:2020-02-05 15:13:25
解答
AA1 = a => BB1 = a => AB1 = a / sin(30) = 2a
=> A1B1 = AB = a / tan(30) = sq(3)a (sq(3)代表根号3)
=> AC = A1C1 = A1B1 / cos(30) = 2a,B1C1 = A1B1 × tan(30) = a
=> B1C = sq(B1B^2 + B1C1^2) = sq(2)a
异面直线AB1与A1C1的夹角为∠B1AC(因为A1C1与AC平行)
根据余弦定理,得
cos(∠B1AC) = (AB1^2 + AC^2 - B1C^2) / (2×AB1×AC) = 2 / 3
注:AB1^2 代表AB1的平方
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版