> 数学 >
如何证明形如4k+3的素数有无穷多个?
人气:219 ℃ 时间:2019-12-17 13:43:24
解答
反证法
假设4k-1形素数只有n个,分别为p1,p2,……,pn
考虑N=4p1p2……pn-1,设N的标准分解为N=q1q2……qm,即有4p1p2……pn-1=q1q2……qn
因为qi(i=1,2,……,m)为质数,所以只有4k+1和4k-1形
若某个qi为4k-1形,则有qi=pj(i=1,2,……,m;j=1,2,……,n),则有qi│-1,矛盾
若qi都是4k+1形,两边对4求余有-1=1(mod4),又矛盾
所以形如4k+3形素数有无穷多个
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版