> 数学 >
已知函数f(x)=x^3-ax^2-bx+c在x=-2/3与x=1时都取得极值求a,b的值及函数f(x)的单调区间;
求a,b的值及函数f(x)的单调区间;若对x属于[-1,2),不等式f(x)
人气:277 ℃ 时间:2019-08-19 09:11:57
解答
(1)函数f(x)=x^3-ax^2-bx+c在x=-2/3与x=1时都取得极值,说明导函数在这两点的函数值为0,由于f'(x)=3x^2-2ax-b,所以有4/3+4/3a-b=0;3-2a-b=0,解得a=1/2 ;b=2 .
(2)f'(x)=3x^2-x-2,当-2/3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版