故
|
|
从而f′(x)=3x2+2cx-(2c+3)=(3x+2c+3)(x-1).
令f′(x)=0,得x=1或x=−
| 2c+3 |
| 3 |
由于f(x)在x=1处取得极值,故−
| 2c+3 |
| 3 |
若−
| 2c+3 |
| 3 |
则当x∈(−∞,−
| 2c+3 |
| 3 |
当x∈(−
| 2c+3 |
| 3 |
当x∈(1,+∞)时,f′(x)>0;
从而f(x)的单调增区间为(−∞,−
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
若−
| 2c+3 |
| 3 |
同上可得,f(x)的单调增区间为(−∞,1],[−
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
|
|
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |
| 2c+3 |
| 3 |