设函数f(x)=x^3+ax^2+bx+c在X=1时取得极值-2,求其单调区间
人气:316 ℃ 时间:2019-08-19 09:18:36
解答
根据题意,x=1时,f(1)=-2,有:
1+a+b+c=-2,即:
a+b+c=-3.(1)
f'(x)=3x^2+2ax+b,根据题意,x=1时,f'(x)=0;
3+a+b=0,即:a+b=-3.(2)
由(1)、(2)可得到:
c=0.
对于f'(x),其判别式=4a^2-12b
=4a^2-12(-3-a)=4(a^2+3a+9)>0,
所以函数f(x)为增函数.
增区间为(-无穷大,+无穷大).
推荐
猜你喜欢
- 短语“问候的不同方式”英文
- in what he class is
- 如图:为台球桌面矩形ABCD示意图,AB=2m,AD=1.5m,E为AD边上任意一点,一球以E点出发经三边碰撞又回到E点,(以E到F到G到H到E)不计球的大小,则球经过的线路长是_.
- 谁能教我作文,《当我遇到挫折的时候》谢了!
- 设集合A={x|1
- 已知圆锥曲线C经过定点P(3,2倍根号3),它的—个焦点为E(1,0),对应于该焦点的准线为x=-1,斜率为2的直线|...
- 两道计算题(a-b)^6(b-a),(a-b+c)(a+b+c)
- 用戴安的ICS1000,AS23阴离子交换柱,ASRS-300做奶制品中的硫氰酸根,条件怎么设比较好?