设a>0,f(x)=e^x/a+a/e^x是R上的偶函数.(1)求a的值(2)证明f(x)在(0,+∞)上是增函数(3)解方程f(x)=2
人气:319 ℃ 时间:2019-10-19 21:44:23
解答
a>0,f(x)=e^x/a+a/e^x是R上的偶函数,
∴f(x)=f(-x),即e^x/a+a/e^x=e^(-x)/a+a/e^(-x),
∴(e^x-1/e^x)(a-1/a)=0,
∴a-1/a=0,a^2=1,a>0,
∴a=1.
(2)f(x)=e^x+e^(-x),x>0,
f'(x)=e^x-e^(-x)>0,
∴f(x)是增函数.
(3)f(x)=2,
(e^x)^2+1=2e^x,
(e^x-1)^2=0,
e^x=1,x=0.
推荐
- 设a>0,f(x)=e^x/a+a/e^x是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上的单调性
- 设a>0,f(X)=e的x方/a+a/e的x方是R上的偶函数.1)求a的值.2)证明f(X)在X>=0上为增函数.定义在R上的
- 设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,1,a 的值2证明f(x)在(0,)上是增函数
- 设a>0,f(x)=exa+a/ex(e>1)是R上的偶函数,则a=_.
- 设a大于0,f(x)=a分之e的x次方+e的x次方分之a是R上的偶函数,1.求a的值.2.证明f(x)在(0,正无穷大)上是
- 孟子三乐 而王天下不与存焉 而什么意思
- 急需10句优美的句子
- 用函数图像求方程解.-x二次方-6x-9=0;1-x-2x二次方=0.最好附图!
猜你喜欢