> 数学 >
设F1,F2为椭圆
x2
4
+
y2
3
=1
左、右焦点,过椭圆中心任作一条直线与椭圆交于P,Q两点,当四边形PF1QF2面积最大时,
PF1
PF2
的值等于(  )
A. 0
B. 1
C. 2
D. 4
人气:239 ℃ 时间:2020-05-01 12:02:00
解答
由于椭圆方程为x24+y23=1,故a=2,b=3,故c=a2−b2=1由题意当四边形PF1QF2的面积最大时,点P,Q恰好是椭圆的短轴的端点,此时PF1=PF2=a=2,由于焦距|F1F2|=2c=2,故△PF1F2为等边三角形,故∠F1PF2=60°,故PF1•PF...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版