已知:向量a=(sinx,1),b=(cosx,-1/2) 求函数f(x)=a·(a-b)的最大值
人气:369 ℃ 时间:2019-08-17 23:14:51
解答
f(x)
=a.(a-b)
=(sinx,1).(sinx-cosx,3/2)
=(sinx)^2-sinxcosx +3/2
= (1/2)(1-cos2x) -(1/2)sin2x+3/2
=2 -(√2/2)(√2/2)(cos2x+sin2x)
=2- (√2/2)cos(2x-π/4)
max f(x) = 2+√2/2
推荐
- 已知向量a=(sinx,cosx),b=(sinx,sinx)若x∈[-3π/8,π/4]函数f(x)=λa*b的最大值
- 已知向量m=(-1,sinx)n=(-2,cosx),函数f(x)=2m·n.(1)求函数在区间[0,π/2]上的最大值
- 已知向量a=(-cosx,sinx),b=(cosx,根号3cosx),函数f(x)=a·b,x∈【0,π】(1)求函数f(x)的最大值
- 已知向量a=(sinx,cosx),b=(cosx,cosx)已知函数f(x)=a(a+b)
- 同问已知向量a=(sinx,cosx),b=(6sinx+cosx,7sinx-2cosx),设函数f(x)=a*b.(1)求函数f(x)的最大值(2 2012
- 某种期刊按原价的70%批发给书摊,摊主按原定价降价1O%卖给读者.某读者用5.40元买了一本,摊主从中盈利多少元?
- It is important to treat others fairly and with respect,just as you would want to be treated
- 关于X、Y的方程组 2X+3Y=4K 3X+2Y=K的解也满足二分之X-三分之Y=1
猜你喜欢