> 数学 >
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.

(Ⅰ)求证:AB∥平面PCD;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)若M是PC的中点,求三棱锥M-ACD的体积.
人气:396 ℃ 时间:2019-10-24 20:20:25
解答
证明:(Ⅰ)∵AB∥CD又∵AB⊄平面PCD,CD⊂平面PCD∴AB∥平面PCD(Ⅱ)在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形,∴AE=DC=1又AB=2,∴BE=1在Rt△BEC中,∠ABC=45°∴CE=BE=1,CB=2∴AD=CE=1则AC=AD...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版