设F
1,F
2是双曲线
x2−=1的两个焦点,P是双曲线上的一点,且3|PF
1|=4|PF
2|,则△PF
1F
2的面积等于( )
A.
4B.
8C. 24
D. 48
人气:468 ℃ 时间:2019-08-17 23:25:34
解答
F
1(-5,0),F
2(5,0),|F
1F
2|=10,
∵3|PF
1|=4|PF
2|,∴设|PF
2|=x,则
|PF1| =x,
由双曲线的性质知
x−x=2,解得x=6.
∴|PF
1|=8,|PF
2|=6,
∴∠F
1PF
2=90°,
∴△PF
1F
2的面积=
×8×6=24.
故选C.
推荐
- 已知双曲线X^2/9-Y^2/16=1的左右焦点分别为F1,F2 P为C右支上一点,且|PF2|=|F1F2|则三角形PF1F2的面积为?
- 设P为双曲线x^2-y^2/12=1上的一点,F1,F2是该双曲线的两个焦点,若PF1:PF2=3:2,则△PF1F2的面积为多少
- 设P为双曲线x2-y2/12=1上的一点,F1、F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则△PF1F2的面积
- 设F1、F2是双曲线x^2-y^2/24的两个焦点,p是双曲线上的点,且|PF1|+|PF2|=14,求三角形PF1F2的面积
- 由双曲线x^2/9-y^2/4=1上的一点P与左右两焦点F1,F2构成△PF1F2,求△PF1的内切圆与边F1F2的切点N的坐标
- 如图,已知圆C:(x-1)2+y2=r2(r>1),设M为圆C与x轴负半轴的交点,过M作圆C的弦MN,并使它的中点P恰好落在y轴上. (Ⅰ)当r=2时,求满足条件的P点的坐标; (Ⅱ)当r∈(1,+∞)时,求
- sch40 什么意思
- 填诗句.
猜你喜欢