> 数学 >
设f(x)为连续函数,证明:∫(0,π)f(丨cosx丨)dx=2∫(0,π/2)f(sinx)dx
人气:205 ℃ 时间:2019-08-20 13:21:32
解答
设t=x-π/2
左边=∫(-π/2,π/2)f(丨cos(t+π/2)丨)dt
=∫(-π/2,π/2)f(丨sint丨)dt
因为f(丨sint丨)是偶函数
所以=2∫(0,π/2)f(丨sint丨)dt
又因为0<=t<=π/2时,sint>=0
所以=2∫(0,π/2)f(sinx)dx=右边
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版