已知数列{an}的通项公式为an=n+1/2,设Tn=1/a1*a3+1/a2*a4+...+1/an*a(n+2) ,求Tn
人气:371 ℃ 时间:2019-08-20 19:33:21
解答
这个题目要用到分式的拆项.
首先,将Tn的每一项1/[ak*a(k+2)] 拆成两项:
1/[ak*a(k+2)]=1/[(k+1/2)*(k+3/2)]=2/[(2k+1)*(2k+3)]=1/(2k+1)-1/(2k+3).
再对k从1到n求和,就得到
Tn=(1/3-1/5)+(1/5-1/7)+…+[1/(2n+1)-1/(2n+3)]
=1/3-1/(2n+3).能不能用个叫什么错位相减发的解解...错位相减法一般适用于等差数列与等比数列的乘积的求和,例如求和:Sn=1+2*2+3*4+4*8+…+n*2^(n-1).Sn=1+2*2+3*4+4*8+…+n*2^(n-1).(1)则有2*Sn=1*2+2*4+3*8+…+(n-1)*2^(n-1)+n*2^n.(2)用(1)式减(2)式得 -Sn=1+2+4+8+…+2^(n-1)-n*2^n.(错位相减)=2^n-1-n*2^n. (等比数列求和)所以 Sn=(n-1)*2^n+1.但这里形如1/[ak*a(k+2)] 的数列一般用裂项(拆项)相消法来求和。
推荐
- 已知数列{an}的通项公式为an=n+1/2,设Tn=1/a1*a3+1/a2*a4+...+1/an*a(n+2)
- 已知数列{an}满足:a1=20,a2=7,an+2-an=-2(n∈N*). (Ⅰ)求a3,a4,并求数列{an}通项公式; (Ⅱ)记数列{an}前2n项和为S2n,当S2n取最大值时,求n的值.
- 已知等比数列an中,a1=2,a3+2是a2和a4的等差中项,(1)求数列an的通项公式.
- 已知数列{an}为等比数列,a3=2,a2+a4=20/3.求{an}的通项公式
- 数列{an}中,已知a1=2,an+1=an/3an+1(n∈N*),求a2,a3,a4猜想an的通项公式,并给予证明.
- 一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几人?(用二元一次方程解)
- 设随机变量X~N(1,4),N(1,2),且X与Y相互独立.则E(X-2Y)=?D(X-2Y)=?
- 数学题化简36:12
猜你喜欢