1、f(x)=(ax+b)/(1+x^2)
因为:f(x)是奇函数,
所以:f(0)=b=0,即:f(x)=ax/(1+x^2).
又因为f(1/2)=2/5
所以:a(1/2)/(1+(1/2)^2)=2/5
即:a(1/2)/(1+1/4)=a(2/5)=2/5
所以:a=1
所以,所求解析式为:f(x)=x/(1+x^2).
2、设x1<x2,且x1,x2∈(-1,1)
f(x2)-f(x1)=x2/(1+x2^2)-x1/(1+x1^2)
=[x2(1+x1^2)-x1(1+x2^2)]/[(1+x1^2)(1+x2^2)]
显然,上式中分母>0,我们只需考查分子.
分子=x2+x2(x1^2)-x1-x1(x2^2)
=(x2-x1)-x1x2(x2-x1)
=(x2-x1)(1-x1x2)
因为x1,x2∈(-1,1),所以x1x2<1,即:1-x1x2>0
又因为x1<x2,所以x2-x1>0
所以:当x2>x1时,f(x2)>f(x1)
即:在(-1,1)定义域内,f(x)是增函数.
3、解不等式f(t-1)+f(t)<0
因为:f(x)=x/(1+x^2).
所以不等式变为:
(t-1)/(1+(t-1)^2)+t/(1+t^2)<0
[(t-1)(t^2+1)+t((t-1)^2+1)]/[(1+(t-1)^2)(1+t^2)]<0
因为分母>0,
所以(t-1)(t^2+1)+t((t-1)^2+1)<0
即:2t^3-3t^2+3t-1<0
t^3+(t-1)^3<0
t^3-(1-t)^3<0
因为t-1,t∈(-1,1),所以t∈(0,1).
所以上述不等式变为
t^3<(1-t)^3
t<1-t
2t<1
t<1/2
前面我们有t∈(0,1),
所以,不等式的解为:
0<t<1/2