已知数列an=3的n-1次方,bn为等差数列,且a1+b1,a2+b2,a3+b3成等比,求数列bn的通项
不是求bn的通项,是求bn的前n项和
人气:140 ℃ 时间:2019-08-18 00:32:26
解答
这道题与你给出的题基本一致,可供参考:
数列的前n项和记为Sn,a1=1,a(n+1)=2S(n+1)(n≥1).
(1)求数列{an}的通项公式;
(2)设等差数列{bn}的各项为正,其前n项和为Tn,且T3=15.若a1+b1,a2+b2,a3+b3成等比数列,求Tn.
a(n+1)=2S(n+1) n≥1
an=2Sn
a(n+1)-an=2[S(n-1)-Sn]=2an
a(n+1)/an=3 a1=1
∴an=3^(n-1)
(2)
a1=1 a2=3 a3=9
T3=3b2=15 b2=5
b1=b2-d
b3=b2+d
a1+b1,a2+b2,a3+b3成等比数列
(a2+b2)^=(a1+b1)(a3+b3)
(3+5)^=(5-d+1)*(5+d+9)=(6-d)(14+d)
64=-d^-8d+84
d^+8d-20=0
d=2 d=-10 ∵bn>0
∴d=2
b1=5-2=3
bn=3+(n-1)×2=2n+1
Tn=[3+2n+1]n/2
=(n+2)n
推荐
- 在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a2,a3,a4及b2,b3,b4; (2)猜想{an},{bn}的通项公式,并证明你的结论.
- 已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3. (1)求数列{an}的通项公式及前n项和Sn的公式; (2)求数列{bn}的通项公式.
- 递增等差数列an满足a1=1,a1,a2,a3为等比数列.设bn=an+2的an次方,求数列bn的前n向和sn
- 已知{an}是首项为a1=1的等差数列且满足a(n+1)>an,等比数列{bn}的前三项分别为b1=a1+1,b2=a2+2,b3=a3+3
- 已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,令bn=2n•an,则数列{bn}的前n项和Sn=_.
- 某溶液中主要含有钠离子、铝离子、氯离子、硫酸根离子四种离子,已知钠铝氯三种离子个数比为3:2:1,
- 七年级第一单元数学测试题(一)
- 写一篇英语短文,题目:一份完美的职业.
猜你喜欢