设f(x)是可导函数且F(x)=∫xf(t)dt(积分区间为0,1/X),求F^n(x)
有结果 f '(1/x)/x^3
人气:463 ℃ 时间:2019-08-20 18:34:00
解答
F(x) =∫xf(t)dt = x∫f(t)dt,F'(x)=∫f(t)dt+x(-1/x^2)f(1/x) = ∫f(t)dt - f(1/x)/x,F''(x)= (-1/x^2)f(1/x)-[(-1/x^2)f'(1/x)-f(1/x)]/x^2 = f'(1/x)/x^4 = x^(-4)f'(1/x),F'''(x)= -4x^(-5)f'(1/x)-x^(-6)f''(1/...应该吧n阶导数与n无关吗?我看错了,求F''(X) 您要会做就帮我做一下吧 我这是为了补考。不想做我也不勉强您 没关系重答如下:
F(x) =∫<0,1/x>xf(t)dt = x∫<0,1/x>f(t)dt,
F'(x)=∫<0,1/x>f(t)dt+x(-1/x^2)f(1/x) = ∫<0,1/x>f(t)dt - f(1/x)/x,
F''(x)= (-1/x^2)f(1/x)-[(-1/x^2)f'(1/x)x-f(1/x)]/x^2 = f'(1/x)/x^3。
推荐
- 设f(x)为连续函数,且∫(1,x)f(t)dt=xf(x)+x²,f(1)=-1,求f(x).注:∫(1,x)为从1到x的积分.
- 设f(x)为连续函数,且满足f(x)=1+xf(t)dt/t^2从1到X的积分,试求f(x)
- 设f(x)连续,则ddx∫x0tf(x2−t2)dt=( ) A.xf(x2) B.-xf(x2) C.2xf(x2) D.-2xf(x2)
- (积分)设函数f在区间[0,1]上可微,且满足1/2f(1)=∫(1/2,0)xf(x)dx
- 若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
- 3月8日妇女节怎么由来呢?
- 反义疑问句疑问词怎么选
- 问一个比较抽象的问题啊 10克金属大概什么样子?就告诉我多大多重就行了,最后用一下常见的东西比较
猜你喜欢