> 数学 >
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
为什么r(A)=2,可得-2为二重根?
人气:457 ℃ 时间:2019-08-20 13:32:05
解答
这是因为 "可对角化的矩阵的秩等于其非零特征值的个数"
A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2
由 r(A)=2 知 A 的特征值为 0,-2,-2.
所以 A^2+3E 的特征值为 (λ^2+3):3,7,7
所以 |A^2+3E| = 3*7*7 = 147.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版