A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
为什么r(A)=2,可得-2为二重根?
人气:246 ℃ 时间:2019-08-20 13:32:05
解答
这是因为 "可对角化的矩阵的秩等于其非零特征值的个数"
A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2
由 r(A)=2 知 A 的特征值为 0,-2,-2.
所以 A^2+3E 的特征值为 (λ^2+3):3,7,7
所以 |A^2+3E| = 3*7*7 = 147.
推荐
- 设A为n阶实对称矩阵,且A^2+A-3E=0,D=1是A的一重特征值,计算行列式A+2E的值
- 设A为3阶矩阵,E-A,E+A,3E-2A的行列式都等于0,求(1)A的特征值 (2)A的行列式
- 设1和2是二阶矩阵A的特征值,则行列式|A^2-2A^-1+3E|=?
- 1.A为三阶矩阵,满足E-A的行列式等于0,E+A的行列式等于0,3E-2A的行列式等于0求A的特征值和A的行列式.2
- 已知3阶矩阵A的特征值为2,1,-1 求A+3E的特征值和计算行列式|A+3E
- 现在有鸡、兔共居一笼,鸡头和兔头一共有15个,鸡脚和兔脚共有44只,问鸡、兔各有几只?
- 求助-翻译-巴西人的邮件---thanks
- 若(x^m÷x^2n)^3÷x^m-n与-1/4x^2为同类项,且2m+5n=7,求25n^2-4m^2的值
猜你喜欢